Comparison of settled dust gravimetric measurements to percent coverage of a surface: A practical correlation based on school classroom measurements

Richard J Shaughnessy, PhD¹ *, Hai Chi Vu¹
¹ University of Tulsa, Department of Chemical Engineering, Tulsa, OK, USA
* rjstulsau@aol.com
Settled Dust

- *Particle settling or particle deposition* is defined as a process by which suspended particles will deposit or settle onto indoor surfaces and subsequently decrease their concentration in the air (Thatcher et al., 1995; Hinds, 1999)

- *Particle deposition is a function of:*
 - Surface types
 - Particle size
 - Air flow velocity
Settled Dust in Schools

- Settled dust: a defined contributor to sick building complaints.
- Health impact proportional to *amount* of dust

Settled dust microscopic (allergens, SVOCs, fibers)
Clutter Factor (allergen buildup)
Particle resuspension: Major source of indoor pollutant hazard for human health (Rosati et al., 2008).
Resuspension rates based on flooring type

- At same floor loading, VCT Resuspension of particles is 3 to 12 times greater than that from a textile floor

Settled dust protocol

- Test data from 426 school classrooms
- Paired sets (textile and hard surfaced rooms; limited data on mass of dust on textile flooring)
- Standardized placement of collection containers in rooms; 2 month minimum collection
- Gravimetric determination/dust detector (% of dust coverage) of accumulated dust
- Checklist of classroom visuals/details
Settled Dust Box Placement

Settled dust boxes placed in both primary and secondary 5th grade classrooms.

Dust Boxes typically 1.5 - 2 m2 above floor to avoid being disturbed.
Dust detector Analysis onsite
Gravimetric analysis onsite
Relationship between mass of settled dust and dust coverage

Settled dust data grouped based on the time dust boxes exposed in classrooms:
- 40 to 60 days (44-57 days).
- 61 to 90 days (64-90 days).
- 91 to 120 days (91-118 days).
- 121 to 150 days (127-147 days).

Table 7.12: Total mass collected based on varied duration of experiment study

<table>
<thead>
<tr>
<th>Study periods, day</th>
<th>40-60</th>
<th>61-90</th>
<th>91-120</th>
<th>121-150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>68</td>
<td>98</td>
<td>210</td>
<td>50</td>
</tr>
<tr>
<td>Total mass collected, mg/m²</td>
<td>181.98</td>
<td>305.41</td>
<td>392.97</td>
<td>611.31</td>
</tr>
<tr>
<td>C.I 95%</td>
<td>24.92</td>
<td>42.44</td>
<td>35.04</td>
<td>74.76</td>
</tr>
</tbody>
</table>
Quality of Relationship between mass of settled dust and dust coverage

- R-squared correlations ranged from 0.47 up to 0.813 for the various time exposure groupings.
- For data collected < 60 days, the dust may not sufficiently accumulate for data analysis.
- Collection periods > 90 days increases potential for disturbance by school occupants and may “overexpose” the collection surface.
Relationship between mass of settled dust and dust coverage

Figure 7.20: Total mass collected vs. DustDetector readings between 61 and 90 days of study periods

+ The mass of dust accumulation and dust detectors exhibits linear correlation ($R^2 = 0.813$) in a period at 61-90 days.
Conclusions

- The relationship between the mass of settled dust (the gravimetric mass) and the dust coverage (the DustDetector reading) exhibited a higher linear correlation in the dust collection period between 61 and 90 days.

- The composite measurements presented in this paper provide a correlation between the gravimetric results and the % coverage results that may be of use in future school studies related to settled dust accumulation.
ACKNOWLEDGEMENTS

- Hai Chi Vu
- Dr. Ulla Haverinen -Shaughnessy
- Tandus Floor covering
- Cleaning Industry Research Institute Int’l