Conditioned pain modulation of pain and the nociceptive flexion reflex across the menstrual cycle in women with and without premenstrual dysphoric disorder

Jennifer L. DelVentura, MA, Emily J. Bartley, MS, Shreela T. Palli, BS, Satin L. Martin, MA, Bethany L. Kuhn, BA, Ellen L. Terry, MA, Kara L. Kerr, BA, & Jamie L. Rhudy, PhD

Department of Psychology, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104

Introduction

Premenstrual dysoric disorder (PMDD) is characterized by severe affective and pain-related symptoms during the late-luteal phase of the menstrual cycle. Furthermore, women with PMDD appear to have a disruption of pain processing, in that they evidence hyperalgesia in response to painful stimuli. At this time, it is unclear whether this hyperalgesia is due to a deficiency in descending inhibitory mechanisms and whether these mechanisms are influenced by menstrual phase.

Objective

To examine conditioned pain modulation (CPM; i.e., pain inhibiting pain) of experimentally-induced pain and the nociceptive flexion reflex (NFR, a physiological correlate of spinal nociception) in healthy controls and women with PMDD across phases of the menstrual cycle.

Participants

Healthy controls (n=20); PMDD (n=20)

• PMDD was diagnosed prospectively via daily diaries completed over 3 months
• Average cycle lengths were not significantly different (p=0.71)
• PMDD=29.75; Healthy controls=30.34

Participants did not differ significantly in age, race, sexual orientation, years of education, employment, or marital status.

• Exclusion Criteria:
 - <15 yrs of age
 - Failure to regular cycle within 2 months of study inclusion
 - Use of hormone preparations within past 6 months
 - Menopause or post-menopause
 - Cardiovascular, neurological, or respiratory problems
 - Chronic pain condition (e.g., back pain)
 - Recent use of analgesic medication
 - History of anxiolytic, antidepressant, and/or antihypertensive medication

Procedure

• Tested during three phases: mid-follicular, ovulatory, and late-luteal
• Menstrual phase and ovulation were verified via daily symptom diaries and salivary hormone tests
• Testing order was counterbalanced
• During each testing session:
 - Informed consent obtained. Sensors and stimulating electrode applied
 - NFR threshold and pain threshold assessed by sending electrical stimulations to the left ankle over the sural nerve
 - CPN of pain and NFR administered

Methods: CPM Procedure

Pre-Ischemia (Baseline)
• 4 electrotactile stimulations delivered to sural nerve (120% pain or NFR threshold): 15-25 s interval between stimulations
• Pain ratings and NFR recorded after each stimulation

Ischemia
• 2 minutes of hand exercises (50% maximum grip strength) followed by 15 s of arm elevation then blood pressure cuff inflated to 220 mm/Hg
• 4 electrotactile stimulations delivered to sural nerve (120% pain or NFR threshold): 15-25 s interval between stimulations
• Pain ratings and NFR recorded after each stimulation

Post-Ischemia
• Blood pressure cuff deflated after 2 minutes
• 4 electrotactile stimulations delivered to sural nerve (120% pain or NFR threshold): 15-25 s interval between stimulations
• Pain ratings and NFR recorded after each stimulation

Results: CPM of pain

Main effect of menstrual phase (p<.01), with highest pain ratings during mid-follicular phase and lowest pain ratings during late-luteal phase

Main effect of CPM phase (p<.01), with highest pain ratings during baseline and lowest pain ratings during post-ischemia

Interaction effect for CPM phase by diagnosis (p<.05), such that PMDD=29.75; Healthy controls=30.34

Conclusions

• No differences were observed between PMDD and Healthy Controls in ischemia task ratings or overall pain ratings. Thus, we did not find evidence of hyperalgesia in women with PMDD.

• We did not find evidence that women with PMDD have impaired conditioned modulation of pain for pain or NFR.

• Additionally, conditioned pain modulation of pain and NFR did not differ across phases of the menstrual cycle.

Funding Source: This work was funded by a grant (HR09-088) from the Oklahoma Center for the Advancement of Science and Technology (OCAST)