Contact Heat Evoked Potentials and Heat Pain Perception in Native Americans: Preliminary finding from the Oklahoma Study of Native American Pain Risk

Department of Psychology, The University of Tulsa, 800 South Tucker Driver, Tulsa, OK 74104

Introduction

• Prevalence rates indicate that Native Americans are at increased risk for chronic pain; yet, little is known about mechanisms that contribute to this higher risk
• Contact heat evoked potentials (CHEPs) are an objective method to assess the integrity of the pain transmission system (specifically Aβ fiber function)
• To do so, 51°C heat pulses are delivered to the skin and electroencephalogram (EEG) is used to record the amplitude of the N2P2 compound evoked potential
• The present study assessed N2P2 amplitudes and heat pain thresholds/tolerances in order to investigate heat sensitivity in Native Americans

Participant Characteristics

• Healthy Participants: N = 184
• 52 Women (50%)
• 92 Men (50%)
• 50 Native American (48.91%)
• Native American heritage was corroborated by a Certificate of Degree of Indian Blood (CDIB) or Tribal ID card
• Average age = 28.3 yrs (SD = 12.08)
• Average amount of education = partial college (50%)

• Exclusion criteria:
 - ≥$50,000
 - $35,000
 - $15,000
 - <$9,999
 - Employment system (specifically Aβ fiber function)
 - To do so, 51°C heat pulses are delivered to the skin and electroencephalogram (EEG) is used to record the amplitude of the N2P2 compound evoked potential
 - The present study assessed N2P2 amplitudes and heat pain thresholds/tolerances in order to investigate heat sensitivity in Native Americans

Methods: Heat Pain Threshold/Tolerance

Heat Pain Threshold
Thermal probe is attached to volar surface of participant’s left forearm
Probe temperature starts at 32°C and increases at a rate of 0.5°C per second until participant indicates heat is painful (average of 4 trials)

Heat Pain Tolerance
Thermal probe is attached to volar surface of participant’s left forearm
Probe temperature starts at 32°C and increases at a rate of 0.5°C per second until participant indicates heat is intolerable (average of 4 trials)

Methods: Contact Heat Evoked Potentials

5 blocks of 5 heat pulses (51°C) to the volar forearm of the non-dominant hand
Participants provided informed consent after the procedures were explained
Event-related potentials recorded at Cz sensor location

Results

There is a relationship between the pain transmission system integrity (as assessed by N2P2 amplitude) and heat pain sensitivity (assessed by threshold and tolerance) higher amplitudes ———> higher sensitivity

The relationship between N2P2 and heat pain Tolerance was moderated by race meaning that NAs showed a weaker relationship between N2P2 & heat tolerance than non-Native Whites

There is an additive effect such that NAs showed a non-significant N2P2 interaction was not significant (p = .06)
This suggests affective factors may have weakened the N2P2-tolerance relationship in the NA sample

The regression analysis predicting heat pain tolerance was significant (R² = .04, p = .009)

Conclusions

• There is a relationship between the pain transmission system integrity (as assessed by N2P2 amplitude) and heat pain sensitivity (assessed by threshold and tolerance) higher amplitudes ———> higher sensitivity

• The relationship between N2P2 and heat pain Tolerance was moderated by race meaning that NAs showed a weaker relationship between N2P2 & heat tolerance than non-Native Whites

• There is an additive effect such that NAs showed a non-significant N2P2 interaction was not significant (p = .06)
This suggests affective factors may have weakened the N2P2-tolerance relationship in the NA sample

• This might constitute a risk factor for chronic pain in NA.

Funding Source

Research supported by the National Institutes of Health and Health Disparities of the National Institutes of Health under Award Number HS00007807 and by the National Science Foundation Graduate Research Fellowship (DGE-1525225). The findings of this study are based on data gathered in the context of the Oklahoma Study of Native American Pain Risk. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.